Autophagy activated by tuberin/mTOR/p70S6K suppression is a protective mechanism against local anaesthetics neurotoxicity
نویسندگان
چکیده
The local anaesthetics (LAs) are widely used for peripheral nerve blocks, epidural anaesthesia, spinal anaesthesia and pain management. However, exposure to LAs for long duration or at high dosage can provoke potential neuronal damages. Autophagy is an intracellular bulk degradation process for proteins and organelles. However, both the effects of LAs on autophagy in neuronal cells and the effects of autophagy on LAs neurotoxicity are not clear. To answer these questions, both lipid LAs (procaine and tetracaine) and amide LAs (bupivacaine, lidocaine and ropivacaine) were administrated to human neuroblastoma SH-SY5Y cells. Neurotoxicity was evaluated by MTT assay, morphological alterations and median death dosage. Autophagic flux was estimated by autolysosome formation (dual fluorescence LC3 assay), LC3-II generation and p62 protein degradation (immunoblotting). Signalling alterations were examined by immunoblotting analysis. Inhibition of autophagy was achieved by transfection with beclin-1 siRNA. We observed that LAs decreased cell viability in a dose-dependent manner. The neurotoxicity of LAs was tetracaine > bupivacaine > ropivacaine > procaine > lidocaine. LAs increased autophagic flux, as reflected by increases in autolysosome formation and LC3-II generation, and decrease in p62 levels. Moreover, LAs inhibited tuberin/mTOR/p70S6K signalling, a negative regulator of autophagy activation. Most importantly, autophagy inhibition by beclin-1 knockdown exacerbated the LAs-provoked cell damage. Our data suggest that autophagic flux was up-regulated by LAs through inhibition of tuberin/mTOR/p70S6K signalling, and autophagy activation served as a protective mechanism against LAs neurotoxicity. Therefore, autophagy manipulation could be an alternative therapeutic intervention to prevent LAs-induced neuronal damage.
منابع مشابه
Quinazoline derivative compound (11d) as a novel angiogenesis inhibitor inhibiting VEGFR2 and blocking VEGFR2-mediated Akt/mTOR /p70s6k signaling pathway
Objective(s): We previously reported a series of quinazoline derivatives as vascular-targeting anticancer agents. In this study, we investigated the mechanism underlying the anti-angiogenic activity of the quinazoline derivative compound 11d. Materials and Methods: We examined the effects of quinazoline derivative 11d on vascular endothelial growth factor receptor-2 (VEGFR2) activation via VEG...
متن کاملNeuroprotective effect of brain-derived neurotrophic factor mediated by autophagy through the PI3K/Akt/mTOR pathway.
Brain‑derived neurotrophic factor (BDNF) has been demonstrated to be a potent growth factor that is beneficial in neuronal functions following hypoxia‑ischemia (HI). Mature BDNF triggers three enzymes, mitogen‑activated protein kinase (MAPK), phosphatidylinositol 3‑kinase (PI3K) and phosphoinositide phospholipase C-γ (PLCγ), which are its predominant downstream regulators. The PI3K‑Akt signalin...
متن کاملEffect of moxibustion on mTOR-mediated autophagy in rotenone-induced Parkinson's disease model rats
Defects in autophagy-mediated clearance of α-synuclein may be one of the key factors leading to progressive loss of dopaminergic neurons in the substantia nigra. Moxibustion therapy for Parkinson's disease has been shown to have a positive effect, but the underlying mechanism remains unknown. Based on this, we explored whether moxibustion could protect dopaminergic neurons by promoting autophag...
متن کاملUlinastatin protects cardiomyocytes against ischemia‑reperfusion injury by regulating autophagy through mTOR activation.
Autophagy is significant in myocardial ischemia-reperfusion (IR) injury. Ulinastatin has been demonstrated to protect cardiomyocytes against IR through inducing anti-inflammatory effects. However, whether ulinastatin has an anti‑autophagic effect is yet to be elucidated. The present study aimed to investigate the effect of ulinastatin on the regulation of autophagy during IR injury. Cardiomyocy...
متن کاملNatural Cyclopeptide RA-XII, a New Autophagy Inhibitor, Suppresses Protective Autophagy for Enhancing Apoptosis through AMPK/mTOR/P70S6K Pathways in HepG2 Cells.
Liver cancer is a progressive, irreversible and aggressive malignant disease, which has no effective chemotherapeutic drugs. RA-XII, a natural cyclopeptide isolated from the traditional Chinese medicine Rubia yunnanensis, exerts anti-cancer and anti-inflammatory activities. This work aimed to investigate the effects of RA-XII on a hepatic tumor and its underlying mechanisms in human hepatoma He...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 21 شماره
صفحات -
تاریخ انتشار 2017